13-23, AGH IMIR, Semestr 2, PNOM

[ Pobierz całość w formacie PDF ]

Ad.13

Wiązanie siłami van der Waalsa (wiązanie międzycząsteczkowe)Wszystkie cząsteczki podlegają działaniu sił międzycząsteczkowych, chociaż w wielu przypadkach są one bardzo małe. Gdy schłodzimy gazowy wodór, H2, w którym atomy cząsteczce połączone są wiązaniem atomowym, do odpowiednio niskich temperatur, siły przyciągania stają się wystarczająco duże aby cząsteczki połączyły się tworząc ciecz, a następnie ciało stałe. W przypadku wodoru siły te są tak małe, że gaz trzeba schłodzić do -252oC, aby przeszedł w stan ciekły. W przypadku helu siły międzycząsteczkowe są nawet mniejsze i w stan ciekły przechodzi on dopiero w temp. -269 oC. Powstawanie sił międzycząsteczkowych można wytłumaczyć na bazie znanego z mechaniki falowej modelu atomu, w którym dodatnio naładowane jądra otoczone są chmurą elektronów. Układ taki nie jest sztywny. Biorąc pod uwagę ciągły ruch elektronów w chmurze, w danym momencie ,może się zdarzyć, że po jednej stronie jądra będzie więcej elektronów niż po drugiej stronie. Układ taki będzie wykazywać biegunowość, ponieważ z jednej strony chmury będzie dominować ładunek ujemny, a z drugiej dodatni. Ruch elektronów w jednym atomie wpływa na ruch elektronów w drugim atomie i stają się one indukowanymi dipolami. Ponieważ układ takiego dipola charakteryzuje się mniejszą energią swobodną niż dwóch izolowanych atomów powstaje trwałe wiązanie międzycząsteczkowe, zwane też, od nazwiska uczonego, który je pierwszy zaobserwował i opisał, wiązanie siłami van der Waalsa. Siły te są mniejsze niż w wiązaniach pierwotnych, jednak zwiększają się one wraz ze wzrostem liczby atomowej pierwiastka. W atomach takich zewnętrzne elektrony są pod mniejszym oddziaływaniem jądra i przez to bardziej skłonne do zharmonizowanego ruchu i przez to silniejszego wiązania. Wiązania międzycząsteczkowe wiążą atomy gazów szlachetnych w stanie ciekłym i stałym, jak również cząsteczki wodoru, azotu, tlenu, chlorowców oraz cząsteczek związków nieorganicznych. Jak nie trudno zauważyć połączenia te znacznie słabną pod wpływem wzrostu temperatury.

 

Ad.16

Anizotropia- Wykazywanie odmiennych właściwości (rozszerzalność termiczna, przewodnictwo elektryczne, współczynnik załamania światła, szybkość wzrostu i rozpuszczania kryształu) w zależności od kierunku. Ciała anizotropowe wykazują różne właściwości w zależności od kierunku, w którym dana właściwość jest rozpatrywana.

Anizotropię sprężystości i prędkości wzrostu wykazują wszystkie kryształy. Pozostałe własności kryształów mogą być anizotropowe lub izotropowe.

Ważną konsekwencją anizotropii prędkości wzrostu w warunkach swobodnego narastania jest samorzutne tworzenie się prawidłowych postaci wielościennych.

Izotropowość materiału jest to brak różnic we właściwościach fizycznych tego materiału, takich jak: rozszerzalność termiczna, przewodzenie ciepła, przewodnictwo elektryczne czy współczynnik załamania światła, niezależnie od tego w jakim kierunku są one mierzone.

Izotropowość jest cechą ciał amorficznych oraz kryształów układu regularnego.

 

Ad. 15

Wartość tej siły i krytyczną odległość odpowiadającą granicznemu odkształceniu sprężystemu można wyliczyć zarówno dla dwóch wyodrębnionych atomów, jak i całego kryształu, przy założeniu doskonałej jego budowy sieciowej. W tym drugim przypadku teoretyczne naprężenie rozciągające potrzebne do pokonania sił spójności wynosi ok. 100 000 MPa, a graniczne odkształcenie sprężyste — ok. 10%. Jak jednak stwierdzono doświadczalnie, rzeczywiste wartości zarówno naprężeń rozrywających, jak i odkształceń sprężystych, są 100-1000 razy mniejsze od teoretycznych. Ta rozbieżność między obliczeniami teoretycznymi a wynikami pomiarów wielu własności metali nasunęła wniosek, potwierdzony następnie doświadczalnie, że struktura rzeczywistych kryształów nie jest doskonała i zawiera pewne wady, wywołujące określone nieprawidłowości budowy i wpływające na ich własności. Stwierdzono również, że niektóre własności metali (np. gęstość, ciepło właściwe, współczynnik rozszerzalności cieplnej) nie są wrażliwe na strukturę i nie zmieniają się ani na skutek nieprawidłowej struktury sieciowej pojedynczego kryształu, ani na skutek obecności w nim domieszek obcych atomów, a w przypadku budowy wielokrystalicznej nie zależą od wielkości ziarn. Większość jednak własności metali, a przede wszystkim wytrzymałość i plastyczność, odporność na korozję, przewodność elektryczna i przenikalność magnetyczna, wyraźnie zależy od struktury. Wpływają na nie zarówno wszelkie nieprawidłowości struktury sieciowej, jak i wielkość ziarn rozłożenie ich granic. Nieprawidłowości struktury sieciowej spotykane w rzeczywistych strukturach krystalicznych można podzielić na trzy grupy: 

• defekty punktowe, 

• defekty liniowe,

• defekty złożone.

Ad.17

Defektami punktowymi nazywa się zakłócenia budowy krystalicznej umiejscowione wokół punktu. Najprostszym defektem tego typu jest brak atomu w węźle sieci przestrzennej, zwany wakansem albo luką. Wakanse powstają przede wszystkim wskutek drgań cieplnych sieci, które są tym większe, im wyższa jest temperatura. Przy określonej amplitudzie drgań atom może wypaść ze swego średniego położenia w węźle sieci i zająć pozycję międzywęzłową. Powstaną wówczas jednocześnie dwa defekty punktowe: wakans i atom wtrącony między węzłowo. Oba wywołują lokalne zakłócenie budowy sieciowej, gdyż obecność wakansu powoduje większe od normalnego zbliżenie sąsiednich atomów (rys. 2.15b), natomiast atom wtrącony powoduje rozsunięcie sąsiednich atomów na odległość większą od normalnej. Opisany defekt nosi nazwę defektu Frenkla i może powstawać tylko w strukturach metali alkalicznych, w których odległości między atomami są wystarczająco duże, by atom mógł zająć pozycję międzywęzłową (rys. 2.15b). Natomiast w zwarcie wypełnionych sieciach krystalicznych tworzą się, defekty punktowe, polegające na powstawaniu wakansu i wywędrowaniu atomu, który ten wakans utworzył, na powierzchnię kryształu. Ten typ defektu nazywa się defektem Schottky'ego i jest powszechny w kryształach metali – rys. 2.15a. Wakanse powstające w sieci mogą wędrować wewnątrz kryształu przez zamianę miejsc z węzłami obsadzonymi atomami. Mogą wywędrować na powierzchni kryształu, co prowadzi do zmniejszenia się ogólnej liczby wakansów. Mogą wreszcie się łączyć, tworząc tzw. zgrupowania wakansów. Liczba wakansów w metalu w stanie równowagi termodynamicznej, w temperaturze otoczenia jest stosunkowo niewielka, wzrasta jednak bardzo szybko przy podwyższeniu temperatury. Ponieważ defekty tego typu odgrywają istotną rolę w procesach dyfuzyjnych, w wielu przypadkach dąży się do uzyskania zwiększone liczby wakansów również w  20 JW  temperaturze otoczenia, poprzez szybkie przechłodzenie metalu z wysokich temperatur, obróbkę plastyczną na zimno (tj. w temperaturach niższych od temperatury rekrystalizacji danego metalu) lub bombardowaniu ciężkimi cząsteczkami alfa.

 

Ad.18,19

Dyskolacja krawędziowa – Powstaje przez wprowadzenie w  dodatkowej płaszczyzny. Cechą charakterystyczną dyslokacji jest duże odkształcenie, co jest spowodowane dążeniem atomów sąsiadujących z linią dyslokacji do dostosowania swych położeń do warunków wytworzonych przez brak płaszczyzny. W krysztale idealnym do zamknięcia konturu potrzeba szesnastu wektorów, a w krysztale z dyslokacją siedemnastu. Właśnie ten 17. wektor nosi nazwę wektora Burgersa i jest miarą wielkości dyslokacji. Ogólnie przyjmuje się, że  to defekt, wokół którego kontur Burgersa nie zamyka się. Cechą charakterystyczną dyslokacji krawędziowej jest to, że wektor Burgersa jest do dyslokacji prostopadły. Rozróżnia się dyslokacje dodatnie(+) i ujemne(-).

Dyslokację krawędziową wywołuje obecność w przestrzennej sieci krystaliczne dodatkowej półpłaszczyzny obsadzonej atomami (zw. ekstrapłaszczyzną), które krawędź stanowi dowolna linia brzegowa, nazywana linią dyslokacji. W zależność od usytuowania  21 JW dodatkowej półpłaszczyzny rozróżnia się dyslokację dodatnią, oznaczoną symbolem - ⊥ i ujemną, oznaczoną symbolem T (pionowa kreska w symbolu dyslokacji oznacza dodatkową półpłaszczyznę, pozioma — płaszczyznę poślizgu). Na rysunku 2.17 pokazano dyslokację krawędziową dodatnią Rys. 2.17. Schemat dyslokacji krawędziowej w krysztale o sieci regularnej: a) przekrój poprzeczny kryształu zawierającego dyslokację dodatnią, b) perspektywiczny obraz rozmieszczenia atomów wokół dyslokacji dodatniej; AB — płaszczyzna poślizgu Wokół linii dyslokacji istnieje pole naprężeń sprężystych; ściskających w części kryształu zawierającej dodatkową półpłaszczyznę (odległości między sąsiednimi atomami są mniejsze od stałych sieciowych), rozciągających — w pozostałej części kryształu (odległości między sąsiednimi atomami są większe od stałych sieciowych). Wynika z tego, że wokół dyslokacji krawędziowej występuje jednocześnie postaciowe i objętościowe odkształcenie kryształu. Dyslokacje krawędziowe charakteryzują się określonymi własnościami dynamicznymi, m.in. mają możliwość poruszania się w płaszczyźnie poślizgu pod wpływem naprężeń wewnętrznych lub zewnętrznych, w wyniku czego następuje poślizg części kryształu wzdłuż określonej płaszczyzny sieciowej. Obliczono, że naprężenie potrzebne do wywołania przesuwania się dyslokacji jest bardzo małe, rzędu l MPa pod warunkiem, że siły wiązań w krysztale nie zależą od kierunków. Dyslokacje krawędziowe mogą się przemieszczać w krysztale również przez wspinanie, polegające na odłączeniu się atomów od krawędzi dodatkowej półpłaszczyzny i ich migracji do wakansów (rys. 2.18). Oczywiście możliwe jest także zjawisko odwrotne, polegające na opuszczaniu pozycji węzłowych przez atomy i ich dołączaniu do krawędzi półpłaszczyzny. Przemieszczanie się dyslokacji krawędziowych przez wspinanie zależy od ilości wakansów w krysztale i zachodzi bardziej intensywnie w temperaturach podwyższonych, np. podczas pełzania metali. Innym przejawem własności dynamicznych jest przyciąganie się dyslokacji różnoimiennych i odpychanie się dyslokacji jednoimiennych. W pierwszym przypadku możliwa jest anihilacja (zanik) dyslokacji, jeśli leżą one w tej samej płaszczyźnie poślizgu lub w płaszczyznach równoległych. Określone oddziaływanie występuje także między dyslokacjami krawędziowymi atomami obcych pierwiastków znajdujących się w metalu. Atomy o większych średnicach zajmujące położenia węzłowe oraz atomy o małych średnicach zajmujące położenia międzywęzłowe (węgiel, azot, wodór) migrują do rozciągniętej strefy kryształu, leżącej bezpośrednio pod krawędzią dodatkowej półpłaszczyzny. Natomiast atomy o małych średnicach, zajmujące położenia węzłowe migrują do ściskanej części kryształu, gdzie zastępując większe atomy metalu osnowy, obniżają energię odkształcenia kryształu 

 

 

 

Ad.20

 





Drugim prostym rodzajem dyslokacji jest dyslokacja śrubowa, wyznaczająca granicę między przesuniętą i nieprzesuniętą częścią kryształu. Granica ta przebiega równolegle do kierunku poślizgu a nie prostopadle, jak to ma miejsce w przypadku dyslokacji krawędziowej. Dyslokację śrubową najlepiej wyjaśnić na perspektywicznym modelu fragmentu kryształu, którego jedna część jest przesunięta względem drugiej o jedną odległość atomową (rys. 2.19).  22 JW  Rys. 2.18. Schemat przemieszczania się dyslokacji krawędziowej przez wspinanie  W wyniku tego przesunięcia poszczególne płaszczyzny atomowe przekształcają się w powierzchnie śrubowe. Rozróżnia się dyslokacje prawo-skrętne wywołujące poślizg w kierunku pokazanym na rys. 2.19, i dyslokacje lewo-skrętne wywołujące poślizg w kierunku przeciwnym. Podobnie jak dyslokacje krawędziowe, dyslokacje śrubowe mogą przemieszczać się przy małych naprężeniach stycznych, jeśli w płaszczyźnie poślizgu nie ma przeszkód hamujących ich ruch. W przypadku obecności takich przeszkód (np. obcych atomów), naprężenie potrzebne do uruchomienia dyslokacji jest tym większe, im mniejsza jest odległość między sąsiednimi przeszkodami. Zjawisko to ma oczywisty wpływ na własności wytrzymałościowe stopów. Równoległe dyslokacje śrubowe jednoimienne odpychają się, różnoimienne — przyciągają. Te ostatnie mogą się także w określonych przypadkach anihilować. Rys. 2.19. Schemat dyslokacji śrubowej Dyslokacjom śrubowym nie towarzyszy objętościowe odkształcenie kryształu. Dlatego wokół nich nie występuje wybiorcze rozmieszczenie atomów obcych pierwiastków. Proste typy dyslokacji występują w sieci krystalicznej rzadko. Większość dyslokacji stanowi kombinację dyslokacji krawędziowych i śrubowych

 

 

 

 

 

Ad.21

Omówione defekty dotyczyły zakłóceń budowy sieci krystalicznej występujących w pojedynczym krysztale. Metale i stopy techniczne, jak już wiadomo, są jednak materiałami wielokrystalicznymi, złożonymi z wielkiej liczby ziarn. Orientacja krystalograficzna tych ziarn jest w zasadzie chaotyczna (rys. 2.20), toteż na granicy ziarn spotykają się różnie zorientowane sieci przestrzenne, ukierunkowane względem siebie pod dużymi kątami, wynoszącymi najczęściej kilkanaście do kilkudziesięciu stopni (dlatego granice ziarn nazywa się także granicami dużego kąta). Jest rzeczą oczywistą, że ułożenie atomów na granicy ziarn  23 JW  jest uzależnione od działania obu stykających się sieci krystalograficznych, w wyniku czego stanowi pewną mikrostrukturę przejściową, nie odpowiadającą orientacji ani jednego, ani drugiego ziarna - rys. 2.21. Ta przejściowa struktura o grubości kilku odległości międzyatomowych jest strukturą zakłóconą, tym bardziej, że na granicach ziarn grupują się również wszelkie zanieczyszczenia, które nawet w najczystszych metalach występują w pewnych ilościach. W rezultacie granice ziarn mają wyższą wytrzymałość niż inne ziarna, natomiast niższy potencjał elektrochemiczny, a więc mniejszą odporność chemiczną, objawiająca się m.in. łatwiejszym trawieniem na zgładach metalograficznych.. Łączna energia granic osiąga minimum w przypadku ziarn o kształcie (w przekroju) foremnych sześcioboków i prostoliniowych granicach. Ziarna o liczbie boków (w przekroju) mniejszej od sześciu mają granice wypukłe, a o liczbie boków większej od sześciu — granice wklęsłe



(rys. 2.22).

 

 

 

 

 

 

Ad.23

wytrzymałość rzeczywista metali zmniejsza się wraz ze zwiększaniem liczby (gęstości) dyslokacji i innych defektów sieciowych, tylko do pewnej granicy i po osiągnięciu minimalnej wartości, przy tzw. krytycznej gęstości dyslokacji zaczyna ponownie wzrastać. Zależność między rzeczywistą wytrzymałością metalu a liczbą defektów jego sieci krystalicznej pokazano na rys. 2.24. Wynika z tego również, że warunkiem podwyższenia wytrzymałości metalu jest albo całkowite usunięcie z niego wszelkich nieprawidłowości budowy krystalicznej, albo zwiększenie oporu ruchu dyslokacji poprzez wytworzenie w nim odpowiedniej liczby dyslokacji i innych defektów.

 

Nie znalazłem odpowiedzi na pytanie  14 i 22 może ktoś potrafi na te pytanka odpowiedziećJ

OPRACOWALEM TE TWOJE PYTANIA – 14 I 22. ODPOWIEDZI SA ZAWARTE W OSTATECZNEJ WERSJI DOKUMENTU, GDZIE BEDA WSZYSTKIE ODPOWIEDZI. POZDRO, FILIP.

[ Pobierz całość w formacie PDF ]
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • legator.pev.pl